References
-
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier Science, 2011).
-
Keren, H. et al. The temporal representation of experience in subjective mood. eLife 10, 1–24 (2021).
-
Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA 111, 12252–12257 (2014).
-
Frijda, N., Mesquita, B., Sonnemans, J. & Goozen, S. The duration of affective phenomena or emotions, sentiments and passions. Int. Rev. Stud. Emotion 1, 187–225 (1991).
-
Scherer, K. R. & Wallbott, H. G. Evidence for universality and cultural variation of differential emotion response patterning. J. Pers. Soc. Psychol. 66, 310–328 (1994).
-
Davidson, R. J. Affective style and affective disorders: perspectives from affective neuroscience. Cogn. Emot. 12, 307–330 (1998).
-
Davidson, R. J. Comment: affective chronometry has come of age. Emot. Rev. 7, 368–370 (2015).
-
Gilboa, E. & Revelle, W. Personality and the Structure of Affective Responses (Psychology Press, 1994).
-
Hemenover, S. H. Individual differences in rate of affect change: studies in affective chronometry. J. Pers. Soc. Psychol. 85, 121 (2003).
-
Kring, A. M. & Barch, D. M. The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs. Eur. Neuropsychopharmacol. 24, 725–736 (2014).
-
Sonuga Barke, E. J. S., Taylor, E., Sembi, S. & Smith, J. Hyperactivity and delay aversion-I. The effect of delay on choice. J. Child Psychol. Psychiatry 33, 387–398 (1992).
-
Solanto, M. V. et al. The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multimodal treatment study of AD/HD. J. Abnorm. Child Psychol. 29, 215–228 (2001).
-
Sonuga Barke, E. J. S., Cortese, S., Fairchild, G. & Stringaris, A. Annual research review: transdiagnostic neuroscience of child and adolescent mental disorders-differentiating decision making in attention deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. J. Child Psychol. Psychiatry 57, 321–349 (2016).
-
McRae, T. W. Opportunity and incremental cost: an attempt to define in systems terms. Account. Rev. 45, 315–321 (1970).
-
Hoskin, R. E. Opportunity cost and behavior. J. Account. Res. 21, 78–95 (1983).
-
Palmer, S. & Raftery, J. Opportunity cost. BMJ 318, 1551–1552 (1999).
-
Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B 362, 933–942 (2007).
-
Constantino, S. M. & Daw, N. D. Learning the opportunity cost of time in a patch-foraging task. Cogn. Affect. Behav. Neurosci. 15, 837–853 (2015).
-
Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L. & Platt, M. L. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42, 1931–1939 (2017).
-
Geana, A., Wilson, R., Daw, N. D. & Cohen, J. D. Boredom, Information-Seeking and Exploration. Proc. 38th Annual Conference of the Cognitive Science Society (2016).
-
Agrawal, M., Mattar, M. G., Cohen, J. D. & Daw, N. D. The temporal dynamics of opportunity costs: a normative account of cognitive fatigue and boredom. Psychol. Rev. 129, 564–585 (2022).
-
Eastwood, J. D., Frischen, A., Fenske, M. J. & Smilek, D. The unengaged mind: defining boredom in terms of attention. Perspect. Psychol. Sci. 7, 482–495 (2012).
-
Robison, M. K., Miller, A. L. & Unsworth, N. A multi-faceted approach to understanding individual differences in mind-wandering. Cognition 198, 104078 (2020).
-
Killingsworth, M. A. & Gilbert, D. T. A wandering mind is an unhappy mind. Science 330, 932 (2010).
-
Fox, K. C., Thompson, E., Andrews-Hanna, J. R. & Christoff, K. Is thinking really aversive? A commentary on Wilson et al.’s “Just think: the challenges of the disengaged mind”. Front. Psychol. 5(DEC), 10–13 (2014).
-
Fox, K. C. et al. Affective neuroscience of self-generated thought. Ann. N. Y. Acad. Sci. 1426, 25–51 (2018).
-
van Hooff, M. L. & van Hooft, E. A. Boredom at work: proximal and distal consequences of affective work-related boredom. J. Occup. Health Psychol. 19, 348–359 (2014).
-
Miner, A. G. & Glomb, T. M. State mood, task performance, and behavior at work: a within-persons approach. Organ. Behav. Hum. Dec. Process. 112, 43–57 (2010).
-
Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).
-
Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24 (2016).
-
Vinckier, F., Rigoux, L., Oudiette, D. & Pessiglione, M. Neuro-computational account of how mood fluctuations arise and affect decision making. Nat. Commun. 9, 1708 (2018).
-
Liuzzi, L. et al. Magnetoencephalographic correlates of mood and reward dynamics in human adolescents. Cerebr. Cortex 32, 3318–3330 (2022).
-
Bedder, R. L., Vaghi, M. M., Dolan, R. J. & Rutledge, R. B. Risk taking for potential losses but not gains increases with time of day. PsyArXiv https://doi.org/10.31234/osf.io/3qdnx (2020).
-
Grilli, L. & Rampichini, C. Specification of random effects in multilevel models: a review. Qual. Quant. 49, 967–976 (2015).
-
Schielzeth, H. et al. Robustness of linear mixed effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).
-
Feingold, A. Confidence interval estimation for standardized effect sizes in multilevel and latent growth modeling. J. Consult. Clin. Psychol. 83, 157 (2015).
-
Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G. & Fava, M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J. Psychiatr. Res. 43, 76–87 (2008).
-
Halahakoon, D. C. et al. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatr. 77, 1286–1295 (2020).
-
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).
-
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D. & Mermelstein, R. J. A practical guide to calculating Cohen’s ff 22, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 111 (2012).
-
Isen, A. M. & Patrick, R. The effect of positive feelings on risk taking: when the chips are down. Organ. Behav. Hum. Perform. 31, 194–202 (1983).
-
Arkes, H. R., Herren, L. T. & Isen, A. M. The role of potential loss in the influence of affect on risk-taking behavior. Organ. Behav. Hum. Dec. Process. 42, 181–193 (1988).
-
Schulreich, S. et al. Music-evoked incidental happiness modulates probability weighting during risky lottery choices. Front. Psychol. 4, 981 (2014).
-
Hunter, J. A., Dyer, K. J., Cribbie, R. A. & Eastwood, J. D. Exploring the utility of the Multidimensional State Boredom Scale. Eur. J. Psychol. Assess. 32, 241–250 (2016).
-
Struk, A. A., Carriere, J. S. A., Cheyne, J. A. & Danckert, J. A short boredom proneness scale: development and psychometric properties. Assessment 24, 346–359 (2017).
-
Seli, P. et al. Mind-wandering as a natural kind: a family-resemblances view. Trends Cogn. Sci. 22, 479–490 (2018).
-
Christoff, K. et al. Mind-wandering as a scientific concept: cutting through the definitional haze. Trends Cogn. Sci. 22, 957–959 (2018).
-
Seli, P. et al. The family-resemblances framework for mind-wandering remains well clad. Trends Cogn. Sci. 22, 959–961 (2018).
-
Turnbull, A. et al. The ebb and flow of attention: between-subject variation in intrinsic connectivity and cognition associated with the dynamics of ongoing experience. NeuroImage 185, 286–299 (2019).
-
Mrazek, M. D., Phillips, D. T., Franklin, M. S., Broadway, J. M. & Schooler, J. W. Young and restless: validation of the Mind-Wandering Questionnaire (MWQ) reveals disruptive impact of mind-wandering for youth. Front. Psychol. 4, 560 (2013).
-
Nunokawa, J. The importance of being bored: the dividends of ennui in “The Picture of Dorian Gray”. Studies in the Novel 28, 357–371 (1996).
-
Shattuck, R. Proust’s Way: A Field Guide to In Search of Lost Time (WW Norton & Company, 2001).
-
Proust, M. Swann’s Way: In Search of Lost Time Vol. 1 (Yale Univ. Press, 2013).
-
Ciocan, C. Heidegger and the problem of boredom. J. Br. Soc. Phenomenol. 41, 64–77 (2010).
-
Ratcliffe, M. in The Cambridge Companion to Heidegger’s Being and Time (ed. Wrathall, M. A.) 157–176 (Cambridge University Press, 2013).
-
Heidegger, M. The Fundamental Concepts of Metaphysics: World, Finitude, Solitude (Indiana Univ. Press, 1995).
-
Schopenhaur, A. in Parerga und Paralipomena, Vol. 1 217 (Virtual Library, 1851).
-
Kierkegaard, S. Either/Or: A Fragment of Life (Penguin Classics, 1992).
-
Elpidorou, A. The bright side of boredom. Front. Psychol. 5, 1245 (2014).
-
Thompson, P. M. et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).
-
Adhikari, B. M. et al. A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: an ENIGMA rs-fMRI protocol. Brain Imaging Behav. 13, 1453–1467 (2019).
-
Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 83, 550–558 (2013).
-
Noble, S. et al. Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebr. Cortex 27, 5415–5429 (2017).
-
Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest reliability of functional connectivity: a systematic review and meta-analysis. NeuroImage 203, 116157 (2019).
-
Jaspers, K. in Die abnorme Seele in Gesellschaft und Geschichte (Soziologie und Historie der Psychosen und Psychopathien) 594–623 (Springer, 1973).
-
Schneider, K. Klinische Psychopathologie 14 edn (Georg Thieme Verlag, 1992).
-
Berrios, G. E. Phenomenology, psychopathology and Jaspers: a conceptual history. Hist. Psychiatry 3, 303–327 (1992).
-
Westgate, E. C. & Wilson, T. D. Boring thoughts and bored minds: the MAC model of boredom and cognitive engagement. Psychol. Rev. 125, 689 (2018).
-
Barrett, L. F. Feelings or words? Understanding the content in self-report ratings of experienced emotion. J. Pers. Soc. Psychol. 87, 266–281 (2004).
-
Westgate, E. C. & Steidle, B. Lost by definition: why boredom matters for psychology and society. Soc. Pers. Psychol. Compass 14, e12562 (2020).
-
Frijda, N. H. in The Oxford Companion to Emotion and the Affective Sciences (eds Sander, D. & Scherer, K. R.) 258–259 (Oxford Univ. Press, 2009).
-
Ekkekakis, P. The Measurement of Affect, Mood, and Emotion: A Guide for Health-Behavioral Research (Cambridge University Press, 2013).
-
Rottenberg, J. Mood and emotion in major depression. Curr. Dir. Psychol. Sci. 14, 167–170 (2005).
-
Nowlis, V. & Nowlis, H. H. The description and analysis of mood. Ann. N. Y. Acad. Sci. 65, 345–355 (1956).
-
Ekman, P. An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992).
-
Watson, D. Mood and Temperament (Guilford Press, 2000).
-
Diener, E. Subjective well-being: the science of happiness and a proposal for a national index. Am. Psychol. 55, 34 (2000).
-
Robinson, M. D. & Clore, G. L. Belief and feeling: evidence for an accessibility model of emotional self-report. Psychol. Bull. 128, 934–960 (2002).
-
Costello, E. J. & Angold, A. Scales to assess child and adolescent depression: checklists, screens, and nets. J. Am. Acad. Child Adolesc. Psychiatry 27, 726–737 (1988).
-
Pavot, W. & Diener, E. The affective and cognitive context of self-reported measures of subjective well-being. Soc. Indic. Res. 28, 1–20 (1993).
-
Ebner-Priemer, U. W. & Trull, T. J. Ecological momentary assessment of mood disorders and mood dysregulation. Psychol. Assess. 21, 463 (2009).
-
Siegel, E. H. et al. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 144, 343 (2018).
-
Gendron, M., Roberson, D. & Barrett, L. F. Cultural variation in emotion perception is real: a response to Sauter, Eisner, Ekman, and Scott (2015). Psychol. Sci. 26, 357–359 (2015).
-
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M. & Pollak, S. D. Emotional expressions reconsidered: challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 20, 1–68 (2019).
-
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).
-
Paolacci, G., Chandler, J. & Ipeirotis, P. G. Running experiments on Amazon mechanical turk. Judgm. Dec. Making 5, 411–419 (2010).
-
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
-
Ho, N. S. P. et al. Facing up to why the wandering mind: patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. NeuroImage 214, 116765 (2020).
-
Adler, N. E., Epel, E. S., Castellazzo, G. & Ickovics, J. R. Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. Health Psychol. 19, 586–592 (2000).
-
Singh-Manoux, A., Marmot, M. G. & Adler, N. E. Does subjective social status predict health and change in health status better than objective status? Psychosom. Med. 67, 855–861 (2005).
-
Radloff, L. S. The CES-D scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1, 385–401 (1977).
-
Snaith, R. P. et al. A scale for the assessment of hedonic tone. The Snaith–Hamilton Pleasure Scale. Br. J. Psychiatry 167, 99–103 (1995).
-
Angold, A., Costello, E. J., Messer, S. C. & Pickles, A. Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. Int. J. Methods Psychiatr. Res. 5, 237–249 (1995).
-
Birmaher, B. et al. Psychometric properties of the screen for child anxiety related emotional disorders (SCARED): a replication study. J. Am. Acad. Child Adolesc. Psychiatry 38, 1230–1236 (1999).
-
Jolly, E. Pymer4: connecting R and Python for linear mixed modeling. J. Open Source Softw. 3, 862 (2018).
-
Snijders, T. A. B. & Bosker, R. J. Modeled variance in two-level models. Sociol. Methods Res. 22, 342–363 (1994).
-
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed effects models. Methods Ecol. Evol. 4, 133–142 (2013).
-
Barton, K. MuMIn: multi-model inference. R Project http://r-forge.r-project.org/projects/mumin/ (2009) .
-
Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).
-
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv https://doi.org/10.48550/arXiv.1412.6980 (2014).
-
Rutledge, R. B. Risky decision and happiness task: The Great Brain Experiment smartphone app. Dryad https://doi.org/10.5061/dryad.prr4xgxkk (2021).
Leave A Comment