References

  1. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier Science, 2011).

  2. Keren, H. et al. The temporal representation of experience in subjective mood. eLife 10, 1–24 (2021).

    Article 

    Google Scholar
     

  3. Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA 111, 12252–12257 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. Frijda, N., Mesquita, B., Sonnemans, J. & Goozen, S. The duration of affective phenomena or emotions, sentiments and passions. Int. Rev. Stud. Emotion 1, 187–225 (1991).


    Google Scholar
     

  5. Scherer, K. R. & Wallbott, H. G. Evidence for universality and cultural variation of differential emotion response patterning. J. Pers. Soc. Psychol. 66, 310–328 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  6. Davidson, R. J. Affective style and affective disorders: perspectives from affective neuroscience. Cogn. Emot. 12, 307–330 (1998).

    Article 

    Google Scholar
     

  7. Davidson, R. J. Comment: affective chronometry has come of age. Emot. Rev. 7, 368–370 (2015).

    Article 

    Google Scholar
     

  8. Gilboa, E. & Revelle, W. Personality and the Structure of Affective Responses (Psychology Press, 1994).

  9. Hemenover, S. H. Individual differences in rate of affect change: studies in affective chronometry. J. Pers. Soc. Psychol. 85, 121 (2003).

    Article 
    PubMed 

    Google Scholar
     

  10. Kring, A. M. & Barch, D. M. The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs. Eur. Neuropsychopharmacol. 24, 725–736 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. Sonuga Barke, E. J. S., Taylor, E., Sembi, S. & Smith, J. Hyperactivity and delay aversion-I. The effect of delay on choice. J. Child Psychol. Psychiatry 33, 387–398 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  12. Solanto, M. V. et al. The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multimodal treatment study of AD/HD. J. Abnorm. Child Psychol. 29, 215–228 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  13. Sonuga Barke, E. J. S., Cortese, S., Fairchild, G. & Stringaris, A. Annual research review: transdiagnostic neuroscience of child and adolescent mental disorders-differentiating decision making in attention deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. J. Child Psychol. Psychiatry 57, 321–349 (2016).

    Article 
    PubMed 

    Google Scholar
     

  14. McRae, T. W. Opportunity and incremental cost: an attempt to define in systems terms. Account. Rev. 45, 315–321 (1970).


    Google Scholar
     

  15. Hoskin, R. E. Opportunity cost and behavior. J. Account. Res. 21, 78–95 (1983).

    Article 

    Google Scholar
     

  16. Palmer, S. & Raftery, J. Opportunity cost. BMJ 318, 1551–1552 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  17. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B 362, 933–942 (2007).

    Article 

    Google Scholar
     

  18. Constantino, S. M. & Daw, N. D. Learning the opportunity cost of time in a patch-foraging task. Cogn. Affect. Behav. Neurosci. 15, 837–853 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L. & Platt, M. L. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42, 1931–1939 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  20. Geana, A., Wilson, R., Daw, N. D. & Cohen, J. D. Boredom, Information-Seeking and Exploration. Proc. 38th Annual Conference of the Cognitive Science Society (2016).

  21. Agrawal, M., Mattar, M. G., Cohen, J. D. & Daw, N. D. The temporal dynamics of opportunity costs: a normative account of cognitive fatigue and boredom. Psychol. Rev. 129, 564–585 (2022).

    Article 
    PubMed 

    Google Scholar
     

  22. Eastwood, J. D., Frischen, A., Fenske, M. J. & Smilek, D. The unengaged mind: defining boredom in terms of attention. Perspect. Psychol. Sci. 7, 482–495 (2012).

    Article 
    PubMed 

    Google Scholar
     

  23. Robison, M. K., Miller, A. L. & Unsworth, N. A multi-faceted approach to understanding individual differences in mind-wandering. Cognition 198, 104078 (2020).

    Article 
    PubMed 

    Google Scholar
     

  24. Killingsworth, M. A. & Gilbert, D. T. A wandering mind is an unhappy mind. Science 330, 932 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  25. Fox, K. C., Thompson, E., Andrews-Hanna, J. R. & Christoff, K. Is thinking really aversive? A commentary on Wilson et al.’s “Just think: the challenges of the disengaged mind”. Front. Psychol. 5(DEC), 10–13 (2014).


    Google Scholar
     

  26. Fox, K. C. et al. Affective neuroscience of self-generated thought. Ann. N. Y. Acad. Sci. 1426, 25–51 (2018).

    Article 

    Google Scholar
     

  27. van Hooff, M. L. & van Hooft, E. A. Boredom at work: proximal and distal consequences of affective work-related boredom. J. Occup. Health Psychol. 19, 348–359 (2014).

    Article 
    PubMed 

    Google Scholar
     

  28. Miner, A. G. & Glomb, T. M. State mood, task performance, and behavior at work: a within-persons approach. Organ. Behav. Hum. Dec. Process. 112, 43–57 (2010).

    Article 

    Google Scholar
     

  29. Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  30. Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Vinckier, F., Rigoux, L., Oudiette, D. & Pessiglione, M. Neuro-computational account of how mood fluctuations arise and affect decision making. Nat. Commun. 9, 1708 (2018).

  32. Liuzzi, L. et al. Magnetoencephalographic correlates of mood and reward dynamics in human adolescents. Cerebr. Cortex 32, 3318–3330 (2022).

    Article 

    Google Scholar
     

  33. Bedder, R. L., Vaghi, M. M., Dolan, R. J. & Rutledge, R. B. Risk taking for potential losses but not gains increases with time of day. PsyArXiv https://doi.org/10.31234/osf.io/3qdnx (2020).

  34. Grilli, L. & Rampichini, C. Specification of random effects in multilevel models: a review. Qual. Quant. 49, 967–976 (2015).

    Article 

    Google Scholar
     

  35. Schielzeth, H. et al. Robustness of linear mixed effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).

    Article 

    Google Scholar
     

  36. Feingold, A. Confidence interval estimation for standardized effect sizes in multilevel and latent growth modeling. J. Consult. Clin. Psychol. 83, 157 (2015).

    Article 
    PubMed 

    Google Scholar
     

  37. Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G. & Fava, M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J. Psychiatr. Res. 43, 76–87 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  38. Halahakoon, D. C. et al. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatr. 77, 1286–1295 (2020).

  39. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).

  40. Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D. & Mermelstein, R. J. A practical guide to calculating Cohen’s ff22, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 111 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  41. Isen, A. M. & Patrick, R. The effect of positive feelings on risk taking: when the chips are down. Organ. Behav. Hum. Perform. 31, 194–202 (1983).

    Article 

    Google Scholar
     

  42. Arkes, H. R., Herren, L. T. & Isen, A. M. The role of potential loss in the influence of affect on risk-taking behavior. Organ. Behav. Hum. Dec. Process. 42, 181–193 (1988).

    Article 

    Google Scholar
     

  43. Schulreich, S. et al. Music-evoked incidental happiness modulates probability weighting during risky lottery choices. Front. Psychol. 4, 981 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  44. Hunter, J. A., Dyer, K. J., Cribbie, R. A. & Eastwood, J. D. Exploring the utility of the Multidimensional State Boredom Scale. Eur. J. Psychol. Assess. 32, 241–250 (2016).

    Article 

    Google Scholar
     

  45. Struk, A. A., Carriere, J. S. A., Cheyne, J. A. & Danckert, J. A short boredom proneness scale: development and psychometric properties. Assessment 24, 346–359 (2017).

    Article 
    PubMed 

    Google Scholar
     

  46. Seli, P. et al. Mind-wandering as a natural kind: a family-resemblances view. Trends Cogn. Sci. 22, 479–490 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  47. Christoff, K. et al. Mind-wandering as a scientific concept: cutting through the definitional haze. Trends Cogn. Sci. 22, 957–959 (2018).

    Article 
    PubMed 

    Google Scholar
     

  48. Seli, P. et al. The family-resemblances framework for mind-wandering remains well clad. Trends Cogn. Sci. 22, 959–961 (2018).

    Article 
    PubMed 

    Google Scholar
     

  49. Turnbull, A. et al. The ebb and flow of attention: between-subject variation in intrinsic connectivity and cognition associated with the dynamics of ongoing experience. NeuroImage 185, 286–299 (2019).

    Article 
    PubMed 

    Google Scholar
     

  50. Mrazek, M. D., Phillips, D. T., Franklin, M. S., Broadway, J. M. & Schooler, J. W. Young and restless: validation of the Mind-Wandering Questionnaire (MWQ) reveals disruptive impact of mind-wandering for youth. Front. Psychol. 4, 560 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  51. Nunokawa, J. The importance of being bored: the dividends of ennui in “The Picture of Dorian Gray”. Studies in the Novel 28, 357–371 (1996).


    Google Scholar
     

  52. Shattuck, R. Proust’s Way: A Field Guide to In Search of Lost Time (WW Norton & Company, 2001).

  53. Proust, M. Swann’s Way: In Search of Lost Time Vol. 1 (Yale Univ. Press, 2013).

  54. Ciocan, C. Heidegger and the problem of boredom. J. Br. Soc. Phenomenol. 41, 64–77 (2010).

    Article 

    Google Scholar
     

  55. Ratcliffe, M. in The Cambridge Companion to Heidegger’s Being and Time (ed. Wrathall, M. A.) 157–176 (Cambridge University Press, 2013).

  56. Heidegger, M. The Fundamental Concepts of Metaphysics: World, Finitude, Solitude (Indiana Univ. Press, 1995).

  57. Schopenhaur, A. in Parerga und Paralipomena, Vol. 1 217 (Virtual Library, 1851).

  58. Kierkegaard, S. Either/Or: A Fragment of Life (Penguin Classics, 1992).

  59. Elpidorou, A. The bright side of boredom. Front. Psychol. 5, 1245 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  60. Thompson, P. M. et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  61. Adhikari, B. M. et al. A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: an ENIGMA rs-fMRI protocol. Brain Imaging Behav. 13, 1453–1467 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  62. Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 83, 550–558 (2013).

    Article 
    PubMed 

    Google Scholar
     

  63. Noble, S. et al. Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebr. Cortex 27, 5415–5429 (2017).

    Article 

    Google Scholar
     

  64. Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest reliability of functional connectivity: a systematic review and meta-analysis. NeuroImage 203, 116157 (2019).

    Article 
    PubMed 

    Google Scholar
     

  65. Jaspers, K. in Die abnorme Seele in Gesellschaft und Geschichte (Soziologie und Historie der Psychosen und Psychopathien) 594–623 (Springer, 1973).

  66. Schneider, K. Klinische Psychopathologie 14 edn (Georg Thieme Verlag, 1992).

  67. Berrios, G. E. Phenomenology, psychopathology and Jaspers: a conceptual history. Hist. Psychiatry 3, 303–327 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  68. Westgate, E. C. & Wilson, T. D. Boring thoughts and bored minds: the MAC model of boredom and cognitive engagement. Psychol. Rev. 125, 689 (2018).

    Article 
    PubMed 

    Google Scholar
     

  69. Barrett, L. F. Feelings or words? Understanding the content in self-report ratings of experienced emotion. J. Pers. Soc. Psychol. 87, 266–281 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  70. Westgate, E. C. & Steidle, B. Lost by definition: why boredom matters for psychology and society. Soc. Pers. Psychol. Compass 14, e12562 (2020).

    Article 

    Google Scholar
     

  71. Frijda, N. H. in The Oxford Companion to Emotion and the Affective Sciences (eds Sander, D. & Scherer, K. R.) 258–259 (Oxford Univ. Press, 2009).

  72. Ekkekakis, P. The Measurement of Affect, Mood, and Emotion: A Guide for Health-Behavioral Research (Cambridge University Press, 2013).

  73. Rottenberg, J. Mood and emotion in major depression. Curr. Dir. Psychol. Sci. 14, 167–170 (2005).

  74. Nowlis, V. & Nowlis, H. H. The description and analysis of mood. Ann. N. Y. Acad. Sci. 65, 345–355 (1956).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  75. Ekman, P. An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992).

    Article 

    Google Scholar
     

  76. Watson, D. Mood and Temperament (Guilford Press, 2000).

  77. Diener, E. Subjective well-being: the science of happiness and a proposal for a national index. Am. Psychol. 55, 34 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  78. Robinson, M. D. & Clore, G. L. Belief and feeling: evidence for an accessibility model of emotional self-report. Psychol. Bull. 128, 934–960 (2002).

    Article 
    PubMed 

    Google Scholar
     

  79. Costello, E. J. & Angold, A. Scales to assess child and adolescent depression: checklists, screens, and nets. J. Am. Acad. Child Adolesc. Psychiatry 27, 726–737 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  80. Pavot, W. & Diener, E. The affective and cognitive context of self-reported measures of subjective well-being. Soc. Indic. Res. 28, 1–20 (1993).

    Article 

    Google Scholar
     

  81. Ebner-Priemer, U. W. & Trull, T. J. Ecological momentary assessment of mood disorders and mood dysregulation. Psychol. Assess. 21, 463 (2009).

  82. Siegel, E. H. et al. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 144, 343 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  83. Gendron, M., Roberson, D. & Barrett, L. F. Cultural variation in emotion perception is real: a response to Sauter, Eisner, Ekman, and Scott (2015). Psychol. Sci. 26, 357–359 (2015).

    Article 
    PubMed 

    Google Scholar
     

  84. Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M. & Pollak, S. D. Emotional expressions reconsidered: challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 20, 1–68 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  85. Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  86. Paolacci, G., Chandler, J. & Ipeirotis, P. G. Running experiments on Amazon mechanical turk. Judgm. Dec. Making 5, 411–419 (2010).

    Article 

    Google Scholar
     

  87. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

  88. Ho, N. S. P. et al. Facing up to why the wandering mind: patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. NeuroImage 214, 116765 (2020).

    Article 
    PubMed 

    Google Scholar
     

  89. Adler, N. E., Epel, E. S., Castellazzo, G. & Ickovics, J. R. Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. Health Psychol. 19, 586–592 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  90. Singh-Manoux, A., Marmot, M. G. & Adler, N. E. Does subjective social status predict health and change in health status better than objective status? Psychosom. Med. 67, 855–861 (2005).

    Article 
    PubMed 

    Google Scholar
     

  91. Radloff, L. S. The CES-D scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1, 385–401 (1977).

    Article 

    Google Scholar
     

  92. Snaith, R. P. et al. A scale for the assessment of hedonic tone. The Snaith–Hamilton Pleasure Scale. Br. J. Psychiatry 167, 99–103 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  93. Angold, A., Costello, E. J., Messer, S. C. & Pickles, A. Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. Int. J. Methods Psychiatr. Res. 5, 237–249 (1995).


    Google Scholar
     

  94. Birmaher, B. et al. Psychometric properties of the screen for child anxiety related emotional disorders (SCARED): a replication study. J. Am. Acad. Child Adolesc. Psychiatry 38, 1230–1236 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  95. Jolly, E. Pymer4: connecting R and Python for linear mixed modeling. J. Open Source Softw. 3, 862 (2018).

    Article 

    Google Scholar
     

  96. Snijders, T. A. B. & Bosker, R. J. Modeled variance in two-level models. Sociol. Methods Res. 22, 342–363 (1994).

    Article 

    Google Scholar
     

  97. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar
     

  98. Barton, K. MuMIn: multi-model inference. R Project http://r-forge.r-project.org/projects/mumin/ (2009) .

  99. Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).


    Google Scholar
     

  100. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv https://doi.org/10.48550/arXiv.1412.6980 (2014).

  101. Rutledge, R. B. Risky decision and happiness task: The Great Brain Experiment smartphone app. Dryad https://doi.org/10.5061/dryad.prr4xgxkk (2021).

Download references

Read More