References

  1. Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries From a Secret World Vol. 1 (Greystone Books, 2016).

  2. Simard, S. W. Finding the Mother Tree: Discovering the Wisdom of the Forest (Knopf Doubleday Publishing Group, 2022).

  3. Powers, R. The Overstory (W. W. Norton & Company, 2018).

  4. Jabr, F. The social life of forests. New York Times Magazine https://www.nytimes.com/interactive/2020/12/02/magazine/tree-communication-mycorrhiza.html (2020).

  5. Kaplan, S. With forests in peril, she’s on a mission to save ‘mother trees’. Washington Post (27 December 2022).

  6. Chung, D. & Williams, R. T. Talking trees. Natl Geogr. 233, 6 (2018).


    Google Scholar
     

  7. Grant, R. Do trees talk to each other? Smithsonian Magazine https://www.smithsonianmag.com/science-nature/the-whispering-trees-180968084/ (2018).

  8. Schwartzberg, L. Fantastic Fungi. Moving Art (2019).

  9. Druyan, A. Cosmos: Possible Worlds: the Search for Intelligent Life on Earth (2020).

  10. Mills, M. C’mon C’mon (2020).

  11. Simard, S. W. How trees talk to each other. YouTube https://www.youtube.com/watch?v=Un2yBgIAxYs (2016).

  12. Abumrad J & Krulwich, R. From tree to shining tree. Radiolab https://radiolab.org/episodes/from-tree-to-shining-tree (2016).

  13. Geddes, L. Unearthing the secret social lives of trees. The Guardian Science Weekly https://www.theguardian.com/science/audio/2021/apr/29/unearthing-the-secret-social-lives-of-trees-podcast (2021).

  14. Davies, D. Trees talk to each other. ‘Mother Tree’ ecologist hears lessons for people, too. National Public Radio https://www.npr.org/sections/health-shots/2021/05/04/993430007/trees-talk-to-each-other-mother-tree-ecologist-hears-lessons-for-people-too (2021).

  15. Braff, Z. Midnight train to Royston. Ted Lasso (2021).

  16. Murphy, R. Welcome, friends. The Watcher (2022).

  17. Milović, M., Kebert, M. & Orlović, S. How mycorrhizas can help forests to cope with ongoing climate change? Pregledni Članci Rev. 5, 279–286 (2021).


    Google Scholar
     

  18. Simard, S. W. & Austin, M. E. in Climate Change and Variabilty (eds Simard, S. W. & Austin, M. E.) 275–302 (IntechOpen Europe, 2010).

  19. Domínguez-Núñez, J. A. in Structure and Functions of the Pedosphere (eds Giri, B. et al.) 365–391 (Springer, 2022).

  20. Authier, L., Violle, C. & Richard, F. Ectomycorrhizal networks in the anthropocene: from natural ecosystems to urban planning. Front. Plant Sci. 13, 900231 (2022).

    Article 

    Google Scholar
     

  21. Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).

    Article 

    Google Scholar
     

  22. Newman, E. Mycorrhizal links between plants—their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).

    Article 

    Google Scholar
     

  23. Bonello, P., Bruns, T. D. & Gardes, M. Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol. 138, 533–542 (1998).

    Article 
    CAS 

    Google Scholar
     

  24. Dahlberg, A. & Stenlid, J. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol. 128, 225–234 (1994).

    Article 

    Google Scholar
     

  25. Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161, 313–320 (2004).

    Article 
    CAS 

    Google Scholar
     

  26. Figueiredo, A. F., Boy, J. & Guggenberger, G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.735299 (2021).

  27. Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).

    Article 

    Google Scholar
     

  28. Trappe, J. M. & Fogel, R. in The Belowground Ecosystem: a Synthesis of Plant-Associated Processes (ed. Marshall J. K.) 205–214 (Colorado State Univ., 1977).

  29. Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 185, 543–553 (2010).

    Article 
    CAS 

    Google Scholar
     

  30. Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103, 616–628 (2015).

    Article 

    Google Scholar
     

  31. Beiler, K. J., Simard, S. W., LeMay, V. & Durall, D. M. Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol. Ecol. 21, 6163–6174 (2012).

    Article 

    Google Scholar
     

  32. Lian, C., Narimatsu, M., Nara, K. & Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171, 825–836 (2006).

    Article 

    Google Scholar
     

  33. Van Dorp, C. H., Simard, S. W. & Durall, D. M. Resilience of Rhizopogon–Douglas-fir mycorrhizal networks 25 years after selective logging. Mycorrhiza 30, 467–474 (2020).

    Article 

    Google Scholar
     

  34. Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).

    Article 

    Google Scholar
     

  35. Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Article 

    Google Scholar
     

  36. Setälä, H. Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76, 1844–1851 (1995).

    Article 

    Google Scholar
     

  37. Kanters, C., Anderson, I. C. & Johnson, D. Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by collembola. Forests 6, 2560–2570 (2015).

    Article 

    Google Scholar
     

  38. Horton, T. R., Bruns, T. D. & Parker, V. T. Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77, 93–102 (1999).


    Google Scholar
     

  39. Kennedy, P. G., Izzo, A. D. & Bruns, T. D. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91, 1071–1080 (2003).

    Article 

    Google Scholar
     

  40. Kennedy, P. G., Smith, D. P., Horton, T. R. & Molina, R. J. Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am. J. Bot. 99, 1691–1701 (2012).

    Article 

    Google Scholar
     

  41. Horton, T. R., Molina, R. & Hood, K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15, 393–403 (2005).

    Article 
    CAS 

    Google Scholar
     

  42. Buscardo, E. et al. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 46, 136–144 (2012).

    Article 
    CAS 

    Google Scholar
     

  43. Hewitt, R. E., Chapin, F. S. III, Hollingsworth, T. N. & Taylor, D. L. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Mol. Ecol. 26, 3826–3838 (2017).

    Article 

    Google Scholar
     

  44. Jia, S., Nakano, T., Hattori, M. & Nara, K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza 27, 733–745 (2017).

    Article 
    CAS 

    Google Scholar
     

  45. Hortal, S. et al. Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups. Mol. Ecol. 21, 2116–2129 (2012).

    Article 
    CAS 

    Google Scholar
     

  46. Wadud, M. A., Nara, K., Lian, C., Ishida, T. A. & Hogetsu, T. Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24, 551–563 (2014).

    Article 

    Google Scholar
     

  47. Germain, S. J. & Lutz, J. A. Shared friends counterbalance shared enemies in old forests. Ecology 102, e03495 (2021).

    Article 

    Google Scholar
     

  48. Simard, S. W. et al. Partial retention of legacy trees protect mycorrhizal inoculum potential, biodiversity, and soil resources while promoting natural regeneration of interior Douglas-fir. Front. For. Glob. Change 3, https://doi.org/10.3389/ffgc.2020.620436 (2021).

  49. Björkman, E. Monotropa hypopitys L.—an epiparasite on tree roots. Physiol. Plant. 13, 308–327 (1960).

    Article 

    Google Scholar
     

  50. Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

    Article 
    CAS 

    Google Scholar
     

  51. Read, D. The ties that bind. Nature 388, 517–518 (1997).

    Article 
    CAS 

    Google Scholar
     

  52. Aleklett, K. & Boddy, L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol. Evol. 36, 787–796 (2021).

    Article 

    Google Scholar
     

  53. Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).

    Article 
    CAS 

    Google Scholar
     

  54. Hasselquist, N. J. et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97, 1012–1022 (2016).


    Google Scholar
     

  55. Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol. 198, 214–221 (2013).

    Article 

    Google Scholar
     

  56. Hoeksema, J. D. in Mycorrhizal Networks (ed. Horton, T. R.) 255–277 (Springer Netherlands, 2015).

  57. Teste, F. P. & Simard, S. W. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158, 193–203 (2008).

    Article 

    Google Scholar
     

  58. Teste, F. P., Simard, S. W., Durall, D. M., Guy, R. D. & Berch, S. M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 98, 429–439 (2010).

    Article 
    CAS 

    Google Scholar
     

  59. Teste, F. P. et al. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90, 2808–2822 (2009).

    Article 

    Google Scholar
     

  60. Lerat, S. et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132, 181–187 (2002).

    Article 

    Google Scholar
     

  61. Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).

    Article 
    CAS 

    Google Scholar
     

  62. He, X., Bledsoe, C. S., Zasoski, R. J., Southworth, D. & Horwath, W. R. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol. 170, 143–151 (2006).

    Article 
    CAS 

    Google Scholar
     

  63. Schoonmaker, A. L., Teste, F. P., Simard, S. W. & Guy, R. D. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154, 455–466 (2007).

    Article 

    Google Scholar
     

  64. Warren, J. M., Brooks, J. R., Meinzer, F. C. & Eberhart, J. L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol. 178, 382–394 (2008).

    Article 
    CAS 

    Google Scholar
     

  65. Bingham, M. A. & Simard, S. W. Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For. Ecol. Manag. 287, 132–139 (2013).

    Article 

    Google Scholar
     

  66. Kranabetter, J. M. Understory conifer seedling response to a gradient of root and ectomycorrhizal fungal contact. Can. J. Bot. 83, 638–646 (2005).

    Article 

    Google Scholar
     

  67. Liang, M. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).

    Article 
    CAS 

    Google Scholar
     

  68. Liang, M. et al. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytol. 230, 2061–2071 (2021).

    Article 

    Google Scholar
     

  69. McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).

    Article 

    Google Scholar
     

  70. Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30, 173–183 (2020).

    Article 

    Google Scholar
     

  71. Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    Article 

    Google Scholar
     

  72. Booth, M. G. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecol. Lett. 7, 538–546 (2004).

    Article 

    Google Scholar
     

  73. Booth, M. G. & Hoeksema, J. D. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91, 2294–2302 (2010).

    Article 

    Google Scholar
     

  74. Brearley, F. Q. et al. Testing the importance of a common ectomycorrhizal network for dipterocarp seedling growth and survival in tropical forests of Borneo. Plant Ecol. Divers. 9, 563–576 (2016).

    Article 

    Google Scholar
     

  75. Dehlin, H. et al. Tree seedling performance and below-ground properties in stands of invasive and native tree species. N. Z. J. Ecol. 32, 67–79 (2008).


    Google Scholar
     

  76. Newbery, D. M. & Neba, G. A. Micronutrients may influence the efficacy of ectomycorrhizas to support tree seedlings in a lowland African rain forest. Ecosphere 10, e02686 (2019).

    Article 

    Google Scholar
     

  77. Oliveira, I. R. et al. Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. For. Ecol. Manag. 491, 119192 (2021).

    Article 

    Google Scholar
     

  78. Paula, R. R. et al. Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol. Biochem. 91, 99–108 (2015).

    Article 
    CAS 

    Google Scholar
     

  79. Nygren, P. & Leblanc, H. A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol. 35, 134–147 (2015).

    Article 
    CAS 

    Google Scholar
     

  80. Liu, Y., Chen, H. & Mou, P. Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation. J. For. Res. 29, 339–346 (2018).

    Article 
    CAS 

    Google Scholar
     

  81. Bingham, M. A. & Simard, S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15, 188–199 (2012).

    Article 
    CAS 

    Google Scholar
     

  82. Robinson, D. & Fitter, A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9–13 (1999).

    Article 
    CAS 

    Google Scholar
     

  83. Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).

    Article 
    CAS 

    Google Scholar
     

  84. Jones, M. D., Durall, D. M. & Tinker, P. B. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125–134 (1998).

    Article 

    Google Scholar
     

  85. Pickles, B. J. et al. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol. 214, 400–411 (2017).

    Article 
    CAS 

    Google Scholar
     

  86. Teste, F. P., Simard, S. W. & Durall, D. M. Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol. 2, 21–30 (2009).

    Article 

    Google Scholar
     

  87. Bingham, M. A. & Simard, S. W. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22, 317–326 (2012).

    Article 

    Google Scholar
     

  88. Pec, G. J. et al. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytol. 213, 864–873 (2017).

    Article 
    CAS 

    Google Scholar
     

  89. Coomes, D. A. & Grubb, P. J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol. Monogr. 70, 171–207 (2000).

    Article 

    Google Scholar
     

  90. Finlay, R. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 103, 143–156 (1986).

    Article 

    Google Scholar
     

  91. Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71, 433–443 (1983).

    Article 

    Google Scholar
     

  92. Wu, B., Nara, K. & Hogetsu, T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol. 149, 137–146 (2001).

    Article 
    CAS 

    Google Scholar
     

  93. Anten, N. P. R. & Chen, B. J. W. Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant Cell Environ. 44, 1059–1071 (2021).

    Article 
    CAS 

    Google Scholar
     

  94. Dominguez, P. G. & Niittylä, T. Mobile forms of carbon in trees: metabolism and transport. Tree Physiol. 42, 458–487 (2021).

    Article 

    Google Scholar
     

  95. Yu, R.-P., Lambers, H., Callaway, R. M., Wright, A. J. & Li, L. Belowground facilitation and trait matching: two or three to tango. Trends Plant Sci. 26, 1227–1235 (2021).

    Article 
    CAS 

    Google Scholar
     

  96. Simard, S. W. in The Word for World is Still Forest (eds Springer, A. & Turpin, E.) 66–72 (K Verlag and Haus der Kulturen der Welt, 2017).

  97. Simard, S. W. in Memory and Learning in Plants (eds Baluska, F. et al.) 191–213 (Springer, 2018).

  98. Boyno, G. & Demir, S. Plant–mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis 86, 155–168 (2022).

    Article 

    Google Scholar
     

  99. Rasheed, M. U., Brosset, A. & Blande, J. D. Tree communication: the effects of “wired” and “wireless” channels on interactions with herbivores. Curr. For. Rep. 9, 33–47 (2023).


    Google Scholar
     

  100. Song, Y. Y., Simard, S. W., Carroll, A., Mohn, W. W. & Zeng, R. S. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 5, 8495 (2015).

    Article 
    CAS 

    Google Scholar
     

  101. Gorzelak, M. A. Kin-Selected Signal Transfer Through Mycorrhizal Networks in Douglas-Fir. PhD thesis, Univ. British Columbia (2017).

  102. Asay, A. K. Mycorrhizal Facilitation of Kin Recognition in Interior Douglas-Fir (Pseudotsuga menziesii var. glauca). MSc thesis, Univ. British Columbia (2013).

  103. Orrego, G. Western Hemlock Regeneration on Coarse Woody Debris is Facilitated by Linkage into a Mycorrhizal Network in an Old-Growth Forest. MSc thesis, Univ. British Columbia (2018).

  104. Diédhiou, A. G. et al. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ. Microbiol. 12, 2219–2232 (2010).


    Google Scholar
     

  105. Grelet, G.-A. et al. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 188, 210–222 (2010).

    Article 
    CAS 

    Google Scholar
     

  106. Van der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150 (2009).

    Article 

    Google Scholar
     

  107. Babikova, Z., Johnson, D., Bruce, T., Pickett, J. & Gilbert, L. Underground allies: how and why do mycelial networks help plants defend themselves? BioEssays 36, 21–26 (2014).

    Article 

    Google Scholar
     

  108. Alaux, P.-L., Zhang, Y., Gilbert, L. & Johnson, D. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants People Planet 3, 433–444 (2021).

    Article 

    Google Scholar
     

  109. Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).

    Article 

    Google Scholar
     

  110. Flinn, K. The idea that trees talk to cooperate is misleading. Scientific American https://www.scientificamerican.com/article/the-idea-that-trees-talk-to-cooperate-is-misleading/ (2021).

  111. Högberg, P. & Högberg, M. N. Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections. For. Ecol. Manag. 516, 120252 (2022).

    Article 

    Google Scholar
     

  112. Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).

    Article 

    Google Scholar
     

  113. Toju, H., Guimarães, P. R., Olesen, J. M. & Thompson, J. N. Assembly of complex plant–fungus networks. Nat. Commun. 5, 5273 (2014).

    Article 
    CAS 

    Google Scholar
     

  114. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Elsevier, 2008).

  115. Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169, 169–178 (2006).

    Article 
    CAS 

    Google Scholar
     

  116. Arnebrant, K., Ek, H., Finlay, R. D. & Söderström, B. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124, 231–242 (1993).

    Article 

    Google Scholar
     

  117. Finlay, R. D. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cauipes. New Phytol. 112, 185–192 (1989).

    Article 
    CAS 

    Google Scholar
     

  118. Cahanovitc, R., Livne-Luzon, S., Angel, R. & Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 16, 1420–1429 (2022).

    Article 
    CAS 

    Google Scholar
     

  119. Teste, F. P., Veneklass, E. J., Dixon, K. W. & Lambers, H. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies? Plant Cell Environ. 38, 50–60 (2015).

    Article 
    CAS 

    Google Scholar
     

  120. Simard, S. W. et al. Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol. 137, 529–542 (1997).

    Article 
    CAS 

    Google Scholar
     

  121. Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).

    Article 
    CAS 

    Google Scholar
     

  122. He, X., Critchley, C., Ng, H. & Bledsoe, C. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3 supplied as ammonium nitrate. New Phytol. 167, 897–912 (2005).

    Article 
    CAS 

    Google Scholar
     

  123. He, X., Critchley, C., Ng, H. & Bledsoe, C. Reciprocal N (15NH4+ or 15NO3) transfer between nonN2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163, 629–640 (2004).

    Article 

    Google Scholar
     

  124. Bingham, M. A. & Simard, S. W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecol. Evol. 1, 306–316 (2011).

    Article 

    Google Scholar
     

  125. Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).

    Article 

    Google Scholar
     

  126. Birch, J. D., Simard, S. W., Beiler, K. J. & Karst, J. Beyond seedlings: ectomycorrhizal fungal networks and growth of mature Pseudotsuga menziesii. J. Ecol. 109, 806–818 (2021).

    Article 
    CAS 

    Google Scholar
     

  127. Färkkilä, S. M. A. et al. Fluorescent nanoparticles as tools in ecology and physiology. Biol. Rev. 96, 2392–2424 (2021).

    Article 

    Google Scholar
     

Download references

Read More