Deep learning is a field with intense computational requirements, and your choice of GPU will fundamentally determine your deep learning experience. But what features are important if you want to buy a new GPU? GPU RAM, cores, tensor cores, caches? How to make a cost-efficient choice? This blog post will delve into these questions, tackle common misconceptions, give you an intuitive understanding of how to think about GPUs, and will lend you advice, which will help you to make a choice that is right for you.

This blog post is designed to give you different levels of understanding of GPUs and the new Ampere series GPUs from NVIDIA. You have the choice: (1) If you are not interested in the details of how GPUs work, what makes a GPU fast compared to a CPU, and what is unique about the new NVIDIA RTX 40 Ampere series, you can skip right to the performance and performance per dollar charts and the recommendation section. The cost/performance numbers form the core of the blog post and the content surrounding it explains the details of what makes up GPU performance.

(2) If you worry about specific questions, I have answered and addressed the most common questions and misconceptions in the later part of the blog post.

(3) If you want to get an in-depth understanding of how GPUs, caches, and Tensor Cores work, the best is to read the blog post from start to finish. You might want to skip a section or two based on your understanding of the presented topics.

**Overview**

This blog post is structured in the following way. First, I will explain what makes a GPU fast. I will discuss CPUs vs GPUs, Tensor Cores, memory bandwidth, and the memory hierarchy of GPUs and how these relate to deep learning performance. These explanations might help you get a more intuitive sense of what to look for in a GPU. I discuss the unique features of the new NVIDIA RTX 40 Ampere GPU series that are worth considering if you buy a GPU. From there, I make GPU recommendations for different scenarios. After that follows a Q&A section of common questions posed to me in Twitter threads; in that section, I will also address common misconceptions and some miscellaneous issues, such as cloud vs desktop, cooling, AMD vs NVIDIA, and others.

## How do GPUs work?

If you use GPUs frequently, it is useful to understand how they work. This knowledge will help you to undstand cases where are GPUs fast or slow. In turn, you might be able to understand better why you need a GPU in the first place and how other future hardware options might be able to compete. You can skip this section if you just want the useful performance numbers and arguments to help you decide which GPU to buy. The best high-level explanation for the question of how GPUs work is my following Quora answer:

Read Tim Dettmers‘ answer to Why are GPUs well-suited to deep learning? on Quora

This is a high-level explanation that explains quite well why GPUs are better than CPUs for deep learning. If we look at the details, we can understand what makes one GPU better than another.

## The Most Important GPU Specs for Deep Learning Processing Speed

This section can help you build a more intuitive understanding of how to think about deep learning performance. This understanding will help you to evaluate future GPUs by yourself. This section is sorted by the importance of each component. Tensor Cores are most important, followed by memory bandwidth of a GPU, the cache hierachy, and only then FLOPS of a GPU.

### Tensor Cores

Tensor Cores are tiny cores that perform very efficient matrix multiplication. Since the most expensive part of any deep neural network is matrix multiplication Tensor Cores are very useful. In fast, they are so powerful, that I do not recommend any GPUs that do not have Tensor Cores.

It is helpful to understand how they work to appreciate the importance of these computational units specialized for matrix multiplication. Here I will show you a simple example of A*B=C matrix multiplication, where all matrices have a size of 32×32, what a computational pattern looks like with and without Tensor Cores. This is a simplified example, and not the exact way how a high performing matrix multiplication kernel would be written, but it has all the basics. A CUDA programmer would take this as a first “draft” and then optimize it step-by-step with concepts like double buffering, register optimization, occupancy optimization, instruction-level parallelism, and many others, which I will not discuss at this point.

To understand this example fully, you have to understand the concepts of cycles. If a processor runs at 1GHz, it can do 10^9 cycles per second. Each cycle represents an opportunity for computation. However, most of the time, operations take longer than one cycle. Thus we essentially have a queue where the next operations needs to wait for the next operation to finish. This is also called the latency of the operation.

Here are some important latency cycle timings for operations. These times can change from GPU generation to GPU generation. These numbers are for Ampere GPUs, which have relatively slow caches.

- Global memory access (up to 80GB): ~380 cycles
- L2 cache: ~200 cycles
- L1 cache or Shared memory access (up to 128 kb per Streaming Multiprocessor): ~34 cycles
- Fused multiplication and addition, a*b+c (FFMA): 4 cycles
- Tensor Core matrix multiply: 1 cycle

Each operation is always performed by a pack of 32 threads. This pack is termed a warp of threads. Warps usually operate in a synchronous pattern — threads within a warp have to wait for each other. All memory operations on the GPU are optimized for warps. For example, loading from global memory happens at a granularity of 32*4 bytes, exactly 32 floats, exactly one float for each thread in a warp. We can have up to 32 warps = 1024 threads in a streaming multiprocessor (SM), the GPU-equivalent of a CPU core. The resources of an SM are divided up among all active warps. This means that sometimes we want to run fewer warps to have more registers/shared memory/Tensor Core resources per warp.

For both of the following examples, we assume we have the same computational resources. For this small example of a 32×32 matrix multiply, we use 8 SMs (about 10% of an RTX 3090) and 8 warps per SM.

To understand how the cycle latencies play together with resources like threads per SM and shared memory per SM, we now look at examples of matrix multiplication. While the following example roughly follows the sequence of computational steps of matrix multiplication for both with and without Tensor Cores, please note that these are very simplified examples. Real cases of matrix multiplication involve much larger shared memory tiles and slightly different computational patterns.

#### Matrix multiplication without Tensor Cores

If we want to do an A*B=C matrix multiply, where each matrix is of size 32×32, then we want to load memory that we repeatedly access into shared memory because its latency is about five times lower (200 cycles vs 34 cycles). A memory block in shared memory is often referred to as a memory tile or just a tile. Loading two 32×32 floats into a shared memory tile can happen in parallel by using 2*32 warps. We have 8 SMs with 8 warps each, so due to parallelization, we only need to do a single sequential load from global to shared memory, which takes 200 cycles.

To do the matrix multiplication, we now need to load a vector of 32 numbers from shared memory A and shared memory B and perform a fused multiply-and-accumulate (FFMA). Then store the outputs in registers C. We divide the work so that each SM does 8x dot products (32×32) to compute 8 outputs of C. Why this is exactly 8 (4 in older algorithms) is very technical. I recommend Scott Gray’s blog post on matrix multiplication to understand this. This means we have 8x shared memory accesses at the cost of 34 cycles each and 8 FFMA operations (32 in parallel), which cost 4 cycles each. In total, we thus have a cost of:

200 cycles (global memory) + 8*34 cycles (shared memory) + 8*4 cycles (FFMA) = 504 cycles

Let’s look at the cycle cost of using Tensor Cores.

#### Matrix multiplication with Tensor Cores

With Tensor Cores, we can perform a 4×4 matrix multiplication in one cycle. To do that, we first need to get memory into the Tensor Core. Similarly to the above, we need to read from global memory (200 cycles) and store in shared memory. To do a 32×32 matrix multiply, we need to do 8×8=64 Tensor Cores operations. A single SM has 8 Tensor Cores. So with 8 SMs, we have 64 Tensor Cores — just the number that we need! We can transfer the data from shared memory to the Tensor Cores with 1 memory transfers (34 cycles) and then do those 64 parallel Tensor Core operations (1 cycle). This means the total cost for Tensor Cores matrix multiplication, in this case, is:

200 cycles (global memory) + 34 cycles (shared memory) + 1 cycle (Tensor Core) = 235 cycles.

Thus we reduce the matrix multiplication cost significantly from 504 cycles to 235 cycles via Tensor Cores. In this simplified case, the Tensor Cores reduced the cost of both shared memory access and FFMA operations. With the new Hooper (H100) and Ada (RTX 40s series) architectures we additionally have the Tensor Memory Accelerator (TMA) unit which can accelerate this operation further.

#### Matrix multiplication with Tensor Cores and the Tensor Memory Accelerator (TMA)

The TMA unit allows the loading of global memory into shared memory without using up the prescious thread resources. As such, threads can focus on work between shared memory and the Tensor Core while the TMA performs asynchronous transfers. This looks as follows.

The TMA fetches memory from global to shared memory (200 cycles). Once the data arrives, the TMA fetches the next block of data asynchronously from global memory. While this is happening, the threads load data from shared memory and perform the matrix multiplication via the tensor core. Once the threads are finished they wait for the TMA to finish the next data transfer, and the sequence repeats.

As such, due to the asynchronous nature, the second global memory read by the TMA is already progressing as the threads process the current shared memory tile. This means, the second read takes only 200 – 34 – 1 = 165 cycles.

Since we do many reads, only the first memory access will be slow and all other memory accesses will be partially overlapped with the TMA. Thus on average, we reduce the time by 35 cycles.

165 cycles (wait for TMA to finish) + 34 cycles (shared memory) + 1 cycle (Tensor Core) = 200 cycles.

Which accelerates the matrix multiplication by another 15%.

From these examples, it becomes clear why the next attribute, memory bandwidth, is so crucial for Tensor-Core-equipped GPUs. Since global memory is the by far the largest cycle cost for matrix multiplication with Tensor Cores, we would even have faster GPUs if the global memory latency could be reduced. We can do this by either increasing the clock frequency of the memory (more cycles per second, but also more heat and higher energy requirements) or by increasing the number of elements that can be transferred at any one time (bus width).

### Memory Bandwidth

From the previous section, we have seen that Tensor Cores are very fast. So fast, in fact, that they are idle most of the time as they are waiting for memory to arrive from global memory. For example, during GPT-3-sized training, which uses huge matrices — the larger, the better for Tensor Cores — we have a Tensor Core TFLOPS utilization of about 45-65%, meaning that even for the large neural networks about 50% of the time, Tensor Cores are idle.

This means that when comparing two GPUs with Tensor Cores, one of the single best indicators for each GPU’s performance is their memory bandwidth. For example, The A100 GPU has 1,555 GB/s memory bandwidth vs the 900 GB/s of the V100. As such, a basic estimate of speedup of an A100 vs V100 is 1555/900 = 1.73x.

Since memory transfers to the Tensor Cores are the limiting factor in performance, we are looking for other GPU attributes that enable faster memory transfer to Tensor Cores. L2 cache, shared memory, L1 cache, and amount of registers used are all related. To understand how a memory hierarchy enables faster memory transfers, it helps to understand how matrix multiplication is performed on a GPU.

To perform matrix multiplication, we exploit the memory hierarchy of a GPU that goes from slow global memory, to faster L2 memory, to fast local shared memory, to lightning-fast registers. However, the faster the memory, the smaller it is.

While logically, L2 and L1 memory are the same, L2 cache is larger and thus the average physical distance that need to be traversed to retrieve a cache line is larger. You can see the L1 and L2 caches as organized warehouses where you want to retrieve an item. You know where the item is, but to go there takes on average much longer for the larger warehouse. This is the essential difference between L1 and L2 caches. Large = slow, small = fast.

For matrix multiplication we can use this hierarchical separate into smaller and smaller and thus faster and faster chunks of memory to perform very fast matrix multiplications. For that, we need to chunk the big matrix multiplication into smaller sub-matrix multiplications. These chunks are called memory tiles, or often for short just tiles.

We perform matrix multiplication across these smaller tiles in local shared memory that is fast and close to the streaming multiprocessor (SM) — the equivalent of a CPU core. With Tensor Cores, we go a step further: We take each tile and load a part of these tiles into Tensor Cores which is directly addressed by registers. A matrix memory tile in L2 cache is 3-5x faster than global GPU memory (GPU RAM), shared memory is ~7-10x faster than the global GPU memory, whereas the Tensor Cores’ registers are ~200x faster than the global GPU memory.

Having larger tiles means we can reuse more memory. I wrote about this in detail in my TPU vs GPU blog post. In fact, you can see TPUs as having very, very, large tiles for each Tensor Core. As such, TPUs can reuse much more memory with each transfer from global memory, which makes them a little bit more efficient at matrix multiplications than GPUs.

Each tile size is determined by how much memory we have per streaming multiprocessor (SM) and how much we L2 cache we have across all SMs. We have the following shared memory sizes on the following architectures:

- Volta (Titan V): 128kb shared memory / 6 MB L2
- Turing (RTX 20s series): 96 kb shared memory / 5.5 MB L2
- Ampere (RTX 30s series): 128 kb shared memory / 6 MB L2
- Ada (RTX 40s series): 128 kb shared memory / 72 MB L2

We see that Ada has a much larger L2 cache allowing for larger tile sizes, which reduces global memory access. For example, for BERT large during training, the input and weight matrix of any matrix multiplication fit neatly into the L2 cache of Ada (but not other Us). As such, data needs to be loaded from global memory only once and then data is available throught the L2 cache, making matrix multiplication about 1.5 – 2.0x faster for this architecture for Ada. For larger models the speedups are lower during training but certain sweetspots exist which may make certain models much faster. Inference, with a batch size larger than 8 can also benefit immensely from the larger L2 caches.

## Estimating Ada / Hopper Deep Learning Performance

This section is for those who want to understand the more technical details of how I derive the performance estimates for Ampere GPUs. If you do not care about these technical aspects, it is safe to skip this section.

### Practical Ada / Hopper Speed Estimates

Suppose we have an estimate for one GPU of a GPU-architecture like Hopper, Ada, Ampere, Turing, or Volta. It is easy to extrapolate these results to other GPUs from the same architecture/series. Luckily, NVIDIA already benchmarked the A100 vs V100 vs H100 across a wide range of computer vision and natural language understanding tasks. Unfortunately, NVIDIA made sure that these numbers are not directly comparable by using different batch sizes and the number of GPUs whenever possible to favor results for the H100. So in a sense, the benchmark numbers are partially honest, partially marketing numbers. In general, you could argue that using larger batch sizes is fair, as the H100/A100 has more memory. Still, to compare GPU architectures, we should evaluate unbiased memory performance with the same batch size.

To get an unbiased estimate, we can scale the data center GPU results in two ways: (1) account for the differences in batch size, (2) account for the differences in using 1 vs 8 GPUs. We are lucky that we can find such an estimate for both biases in the data that NVIDIA provides.

Doubling the batch size increases throughput in terms of images/s (CNNs) by 13.6%. I benchmarked the same problem for transformers on my RTX Titan and found, surprisingly, the very same result: 13.5% — it appears that this is a robust estimate.

As we parallelize networks across more and more GPUs, we lose performance due to some networking overhead. The A100 8x GPU system has better networking (NVLink 3.0) than the V100 8x GPU system (NVLink 2.0) — this is another confounding factor. Looking directly at the data from NVIDIA, we can find that for CNNs, a system with 8x A100 has a 5% lower overhead than a system of 8x V100. This means if going from 1x A100 to 8x A100 gives you a speedup of, say, 7.00x, then going from 1x V100 to 8x V100 only gives you a speedup of 6.67x. For transformers, the figure is 7%.

Using these figures, we can estimate the speedup for a few specific deep learning architectures from the direct data that NVIDIA provides. The Tesla A100 offers the following speedup over the Tesla V100:

- SE-ResNeXt101: 1.43x
- Masked-R-CNN: 1.47x
- Transformer (12 layer, Machine Translation, WMT14 en-de): 1.70x

Thus, the figures are a bit lower than the theoretical estimate for computer vision. This might be due to smaller tensor dimensions, overhead from operations that are needed to prepare the matrix multiplication like img2col or Fast Fourier Transform (FFT), or operations that cannot saturate the GPU (final layers are often relatively small). It could also be artifacts of the specific architectures (grouped convolution).

The practical transformer estimate is very close to the theoretical estimate. This is probably because algorithms for huge matrices are very straightforward. I will use these practical estimates to calculate the cost efficiency of GPUs.

### Possible Biases in Estimates

The estimates above are for H100, A100 , and V100 GPUs. In the past, NVIDIA sneaked unannounced performance degradations into the “gaming” RTX GPUs: (1) Decreased Tensor Core utilization, (2) gaming fans for cooling, (3) disabled peer-to-peer GPU transfers. It might be possible that there are unannounced performance degradations in the RTX 40 series compared to the full Hopper H100.

As of now, one of these degradations was found for Ampere GPUs: Tensor Core performance was decreased so that RTX 30 series GPUs are not as good as Quadro cards for deep learning purposes. This was also done for the RTX 20 series, so it is nothing new, but this time it was also done for the Titan equivalent card, the RTX 3090. The RTX Titan did not have performance degradation enabled.

Currently, no degradation for Ada GPUs are known, but I update this post with news on this and let my followers on twitter know.

**Advantages and Problems for RTX40 and RTX 30 Series**

The new NVIDIA Ampere RTX 30 series has additional benefits over the NVIDIA Turing RTX 20 series, such as sparse network training and inference. Other features, such as the new data types, should be seen more as an ease-of-use-feature as they provide the same performance boost as Turing does but without any extra programming required.

The Ada RTX 40 series has even further advances like the Tensor Memory Accelerator (TMA) introduced above and 8-bit Float (FP8). The RTX 40 series also has similar power and temperature issues compared to the RTX 30. The issue of melting power connector cables in the RTX 40 can be easily prevented by connecting the power cable correctly.

### Sparse Network Training

Ampere allows for fine-grained structure automatic sparse matrix multiplication at dense speeds. How does this work? Take a weight matrix and slice it into pieces of 4 elements. Now imagine 2 elements of these 4 to be zero. Figure 1 shows how this could look like.

When you multiply this sparse weight matrix with some dense inputs, the sparse matrix tensor core feature in Ampere automatically compresses the sparse matrix to a dense representation that is half the size as can be seen in Figure 2. After this compression, the densely compressed matrix tile is fed into the tensor core which computes a matrix multiplication of twice the usual size. This effectively yields a 2x speedup since the bandwidth requirements during matrix multiplication from shared memory are halved.

I was working on sparse network training in my research and I also wrote a blog post about sparse training. One criticism of my work was that “You reduce the FLOPS required for the network, but it does not yield speedups because GPUs cannot do fast sparse matrix multiplication.” Well, with the addition of the sparse matrix multiplication feature for Tensor Cores, my algorithm, or other sparse training algorithms, now actually provide speedups of up to 2x during training.

While this feature is still experimental and training sparse networks are not commonplace yet, having this feature on your GPU means you are ready for the future of sparse training.

### Low-precision Computation

In my work, I’ve previously shown that new data types can improve stability during low-precision backpropagation.

## Leave A Comment