References
-
Turner, J. Sustainable hydrogen production. Science 305, 972–974 (2004).
-
Rashid, M. R., Al Mesfer, M. K., Naseem, H. & Mohd, D. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 4, 2249–8958 (2015).
-
Stiber, S. et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy Environ. Sci. 15, 109–122 (2022).
-
Kuang, Y. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 116, 6624–6629 (2019).
-
Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).
-
Dionigi, F., Reier, T., Pawolek, Z., Gliech, M. & Strasser, P. Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016).
-
Dresp, S. et al. Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 11, 6800–6809 (2021).
-
Hausmann, J. N., Schlӧgl, R., Menezes, P. W. & Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14, 3679–3685 (2021).
-
Khan, M. A. et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021).
-
Dresp, S., Dionigi, F., Klingenhof, M. & Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019).
-
Kana, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).
-
Anantharaj, S. & Aravindan, V. Developments and perspectives in 3D transition‐metal‐based electrocatalysts for neutral and near‐neutral water electrolysis. Adv. Energy Mater. 10, 1902666 (2020).
-
Kapp, E. M. The precipitation of calcium and magnesium from seawater by sodium hydroxide. Biol. Bull. 55, 453–458 (1928).
-
Kirk, D. W. & Ledas, A. E. Precipitate formation during sea water electrolysis. Int. J. Hydrog. Energy 7, 925–932 (1982).
-
Li, P., Jin, Z. & Xiao, D. A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J. Mater. Chem. A 2, 18420–18427 (2014).
-
Hsu, S. H. et al. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018).
-
Yu, L. et al. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN micro-sheet array catalyst. ACS Energy Lett. 5, 2681–2689 (2020).
-
Lu, X. et al. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy Environ. Sci. 11, 1898–1910 (2018).
-
Yu, L. et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020).
-
Wu, L. et al. Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2021).
-
Gao, X. et al. Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 13, 174–182 (2020).
-
Zhao, Y. et al. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 8, 1801926 (2018).
-
Park, J. E. et al. High-performance proton-exchange membrane water electrolysis using a sulfonated poly (arylene ether sulfone) membrane and ionomer. J. Membr. Sci. 620, 118871 (2021).
-
Lindquist, G. A., Xu, Q., Oener, S. Z. & Boettcher, S. W. Membrane electrolyzers for impure-water splitting. Joule 4, 2549–2561 (2020).
-
Surendranath, Y., Matthew, W. & Daniel, G. Mechanistic studies of the oxygen evolution reaction by a cobalt–phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).
-
Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45, 581–587 (1968).
-
Magaz, G. E., Rodenas, L. G., Morando, P. J. & Blesa, M. A. Electrokinetic behaviour and interaction with oxalic acid of different hydrous chromium(III) oxides. Croat. Chem. Acta 71, 917–927 (1998).
-
Yu, L. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019).
-
Li, Y. et al. Sandwich structured Ni3S2–MoS2–Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochim. Acta 390, 138833 (2021).
-
Wang, C. et al. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B 291, 120071–120079 (2021).
-
Rodríguez, R., Blesa, M. A. & Regazzonil, A. E. Surface complexation at the TiO2(anatase)/aqueous solution interface: chemisorption of catechol. J. Colloid Interface Sci. 177, 121–131 (1996).
-
Yokoyama, Y. et al. In situ local pH measurements with hydrated iridium oxide ring electrodes in neutral pH aqueous solutions. Chem. Lett. 49, 195–198 (2020).
-
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).
-
Kunimatsu, K., Yoda, T., Tryk, D. A., Uchida, H. & Watanabe, M. In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys. Chem. Chem. Phys. 12, 621–629 (2010).
-
Zhu, S., Qin, X., Yao, Y. & Shao, M. pH-Dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).
-
Deng, W. et al. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J. Am. Chem. Soc. 141, 2911–2915 (2019).
-
Kitano, S. et al. Heterointerface created on Au cluster‐loaded unilamellar hydroxide electrocatalysts as a highly active site for the oxygen evolution reaction. Adv. Mater. 37, 2110552 (2022).
-
Yang, X. et al. Understanding the pH dependence of underpotential deposited hydrogen on platinum. Angew. Chem. 131, 17882–17887 (2019).
-
Ackermann, T. Hydration of H+ and OH– ions in water from heat capacity measurements. Discuss. Faraday Soc. 24, 180–193 (1957).
-
Wang, X., Xu, C., Jaroniec, M., Zheng, Y. & Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019).
-
Yan, L. et al. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Appl. Catal. B 265, 118555–118566 (2020).
-
Liu, L. et al. The rational design of Cu2−xSe@(Co, Cu)Se2 core–shell structures as bifunctional electrocatalysts for neutral-pH overall water splitting. Nanoscale 13, 1134–1143 (2021).
-
Ling, T. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 8, 1509 (2017).
-
Ling, T. et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, eaau6261 (2018).
-
Kim, B. et al. Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 4, 3585–3604 (2021).
-
Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 4, 743–753 (2020).
-
Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2017).
-
Yamanaka, K. Anodically electrodeposited iridium oxide films from alkaline solutions for electrochromic display devices. Jpn. J. Appl. Phys. 28, 632–637 (1989).
-
Steegstra, P. & Ahlberg, E. In situ pH measurements with hydrous iridium oxide in a rotating ring disc configuration. J. Electroanal. Chem. 685, 1–7 (2012).
-
Albery, W. J. & Calvo, E. J. Ring–disc electrodes. Part 21.—pH measurement with the ring. J. Chem. Soc. Faraday Trans. 1 79, 2583–2596 (1983).
-
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
-
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
-
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
-
Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
-
Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).
-
Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).
-
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Leave A Comment