References

  1. Turner, J. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article 

    Google Scholar
     

  2. Rashid, M. R., Al Mesfer, M. K., Naseem, H. & Mohd, D. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 4, 2249–8958 (2015).


    Google Scholar
     

  3. Stiber, S. et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy Environ. Sci. 15, 109–122 (2022).

    Article 

    Google Scholar
     

  4. Kuang, Y. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 116, 6624–6629 (2019).

    Article 

    Google Scholar
     

  5. Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).

    Article 

    Google Scholar
     

  6. Dionigi, F., Reier, T., Pawolek, Z., Gliech, M. & Strasser, P. Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016).

    Article 

    Google Scholar
     

  7. Dresp, S. et al. Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 11, 6800–6809 (2021).

    Article 

    Google Scholar
     

  8. Hausmann, J. N., Schlӧgl, R., Menezes, P. W. & Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14, 3679–3685 (2021).

    Article 

    Google Scholar
     

  9. Khan, M. A. et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021).

    Article 

    Google Scholar
     

  10. Dresp, S., Dionigi, F., Klingenhof, M. & Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019).

    Article 

    Google Scholar
     

  11. Kana, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article 

    Google Scholar
     

  12. Anantharaj, S. & Aravindan, V. Developments and perspectives in 3D transition‐metal‐based electrocatalysts for neutral and near‐neutral water electrolysis. Adv. Energy Mater. 10, 1902666 (2020).

    Article 

    Google Scholar
     

  13. Kapp, E. M. The precipitation of calcium and magnesium from seawater by sodium hydroxide. Biol. Bull. 55, 453–458 (1928).

    Article 

    Google Scholar
     

  14. Kirk, D. W. & Ledas, A. E. Precipitate formation during sea water electrolysis. Int. J. Hydrog. Energy 7, 925–932 (1982).

    Article 

    Google Scholar
     

  15. Li, P., Jin, Z. & Xiao, D. A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J. Mater. Chem. A 2, 18420–18427 (2014).

    Article 

    Google Scholar
     

  16. Hsu, S. H. et al. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018).

    Article 

    Google Scholar
     

  17. Yu, L. et al. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN micro-sheet array catalyst. ACS Energy Lett. 5, 2681–2689 (2020).

    Article 

    Google Scholar
     

  18. Lu, X. et al. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy Environ. Sci. 11, 1898–1910 (2018).

    Article 

    Google Scholar
     

  19. Yu, L. et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020).

    Article 

    Google Scholar
     

  20. Wu, L. et al. Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2021).

    Article 

    Google Scholar
     

  21. Gao, X. et al. Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 13, 174–182 (2020).

    Article 

    Google Scholar
     

  22. Zhao, Y. et al. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 8, 1801926 (2018).

    Article 

    Google Scholar
     

  23. Park, J. E. et al. High-performance proton-exchange membrane water electrolysis using a sulfonated poly (arylene ether sulfone) membrane and ionomer. J. Membr. Sci. 620, 118871 (2021).

    Article 

    Google Scholar
     

  24. Lindquist, G. A., Xu, Q., Oener, S. Z. & Boettcher, S. W. Membrane electrolyzers for impure-water splitting. Joule 4, 2549–2561 (2020).

    Article 

    Google Scholar
     

  25. Surendranath, Y., Matthew, W. & Daniel, G. Mechanistic studies of the oxygen evolution reaction by a cobalt–phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article 

    Google Scholar
     

  26. Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45, 581–587 (1968).

    Article 

    Google Scholar
     

  27. Magaz, G. E., Rodenas, L. G., Morando, P. J. & Blesa, M. A. Electrokinetic behaviour and interaction with oxalic acid of different hydrous chromium(III) oxides. Croat. Chem. Acta 71, 917–927 (1998).


    Google Scholar
     

  28. Yu, L. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019).

    Article 

    Google Scholar
     

  29. Li, Y. et al. Sandwich structured Ni3S2–MoS2–Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochim. Acta 390, 138833 (2021).

    Article 

    Google Scholar
     

  30. Wang, C. et al. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B 291, 120071–120079 (2021).

    Article 

    Google Scholar
     

  31. Rodríguez, R., Blesa, M. A. & Regazzonil, A. E. Surface complexation at the TiO2(anatase)/aqueous solution interface: chemisorption of catechol. J. Colloid Interface Sci. 177, 121–131 (1996).

    Article 

    Google Scholar
     

  32. Yokoyama, Y. et al. In situ local pH measurements with hydrated iridium oxide ring electrodes in neutral pH aqueous solutions. Chem. Lett. 49, 195–198 (2020).

    Article 

    Google Scholar
     

  33. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  34. Kunimatsu, K., Yoda, T., Tryk, D. A., Uchida, H. & Watanabe, M. In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys. Chem. Chem. Phys. 12, 621–629 (2010).

    Article 

    Google Scholar
     

  35. Zhu, S., Qin, X., Yao, Y. & Shao, M. pH-Dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).

    Article 

    Google Scholar
     

  36. Deng, W. et al. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J. Am. Chem. Soc. 141, 2911–2915 (2019).

    Article 

    Google Scholar
     

  37. Kitano, S. et al. Heterointerface created on Au cluster‐loaded unilamellar hydroxide electrocatalysts as a highly active site for the oxygen evolution reaction. Adv. Mater. 37, 2110552 (2022).

    Article 

    Google Scholar
     

  38. Yang, X. et al. Understanding the pH dependence of underpotential deposited hydrogen on platinum. Angew. Chem. 131, 17882–17887 (2019).

    Article 

    Google Scholar
     

  39. Ackermann, T. Hydration of H+ and OH ions in water from heat capacity measurements. Discuss. Faraday Soc. 24, 180–193 (1957).

    Article 

    Google Scholar
     

  40. Wang, X., Xu, C., Jaroniec, M., Zheng, Y. & Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019).

    Article 

    Google Scholar
     

  41. Yan, L. et al. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Appl. Catal. B 265, 118555–118566 (2020).

    Article 

    Google Scholar
     

  42. Liu, L. et al. The rational design of Cu2−xSe@(Co, Cu)Se2 core–shell structures as bifunctional electrocatalysts for neutral-pH overall water splitting. Nanoscale 13, 1134–1143 (2021).

    Article 

    Google Scholar
     

  43. Ling, T. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 8, 1509 (2017).

    Article 

    Google Scholar
     

  44. Ling, T. et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, eaau6261 (2018).

    Article 

    Google Scholar
     

  45. Kim, B. et al. Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 4, 3585–3604 (2021).

    Article 

    Google Scholar
     

  46. Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 4, 743–753 (2020).

    Article 

    Google Scholar
     

  47. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2017).

    Article 

    Google Scholar
     

  48. Yamanaka, K. Anodically electrodeposited iridium oxide films from alkaline solutions for electrochromic display devices. Jpn. J. Appl. Phys. 28, 632–637 (1989).

    Article 

    Google Scholar
     

  49. Steegstra, P. & Ahlberg, E. In situ pH measurements with hydrous iridium oxide in a rotating ring disc configuration. J. Electroanal. Chem. 685, 1–7 (2012).

    Article 

    Google Scholar
     

  50. Albery, W. J. & Calvo, E. J. Ring–disc electrodes. Part 21.—pH measurement with the ring. J. Chem. Soc. Faraday Trans. 1 79, 2583–2596 (1983).

    Article 

    Google Scholar
     

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 

    Google Scholar
     

  52. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 

    Google Scholar
     

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  55. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article 

    Google Scholar
     

  56. Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).

    Article 

    Google Scholar
     

  57. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Article 

    Google Scholar
     

  58. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 

    Google Scholar
     

Download references

Read More